1	1 The value of E_{cell} indicates whether the cell reaction is thermodynamically feasible. Which of the following is a correct statement about E_{cell} ?					
\blacksquare A E_{cell} is directly proportional to the equilibrium constant.						
	⊠ B	E_{cell} is directly proportional to the entropy change of the system, ΔS_{system} .				
	⊠ C	$E_{\rm cell}$ is directly proportional to the total entropy change, $\Delta S_{\rm total}$.				
	⊠ D	The value of $\ln E_{\rm cell}$ is directly proportional to the total entropy change, $\Delta S_{\rm total}$.				
		(Total for Question = 1 mark)				
2 The enthalpy changes of the reactions below are similar. The equilibrium constants for the two reactions are K_1 and K_2 respectively.						
	Re	eaction 1 $[Cu(H_2O)_6]^{2+}(aq) + EDTA^{4-}(aq) \rightleftharpoons [Cu(EDTA)]^{2-}(aq) + 6H_2O(I)$				
	Re	eaction 2 $[Cu(H_2O)_6]^{2+}(aq) + 4Cl^-(aq) \rightleftharpoons [CuCl_4]^{2-}(aq) + 6H_2O(l)$				
	The	value of K_1 is greater than K_2 because				
	× A	ΔS_{system} is much more positive in Reaction 1.				
	× B	$\Delta S_{\text{surroundings}}$ is much more positive in Reaction 1.				
	\boxtimes C	the EDTA⁴⁻ is more highly charged than Cl⁻.				
	× C	a lower concentration of EDTA ⁴⁻ is needed than Cl ⁻ .				
		(Total for Question = 1 mark)				
3	3 For the reaction					
	$2NO_2(g) \rightleftharpoons N_2O_4(g)$					
	at 450 K the total entropy change, ΔS_{total} is negative. Hence the equilibrium constant, $K_{\text{p'}}$ for this reaction at 450 K is					
	⊠ A ≥	zero.				
	⊠ B	positive and greater than 1.				
	⊠ C	positive and less than 1.				
		negative.				
		(Total for Question = 1 mark)				

4	The overall equation for a reaction between two chemicals, M and N, is					
	$M + 2N \rightarrow P + Q$					
	(a) This reaction occurs spontaneously at room temperature. Which of the following must be true?	(1)				
	\boxtimes A $\Delta H_{\text{reaction}}^{\ominus}$ is positive.	,				
	$lacksquare$ B $\Delta H^{\oplus}_{\text{reaction}}$ is negative.					
	\square C $\Delta S_{\text{total}}^{\ominus}$ is positive.					
	\square D $\Delta S_{total}^{\ominus}$ is negative.					
	(b) The reaction above occurs in two stages via an intermediate, T.					
	$M + N \rightarrow T$ slow					
	$N + T \rightarrow P + Q$ fast					
	From this it can be deduced that the rate equation for the reaction between $\mbox{\it M}$ and $\mbox{\it N}$ is	(1)				
	\triangle A rate = k[M][N]					
	\blacksquare rate = k[M][N] ²					
	Arr c rate = k[M][T]					
	□ rate = k[N][T]					

(Total for Question = 2 marks)

5 Calcium carbonate decomposes at high temperature to form calcium oxide and carbon dioxide:							
		$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$					
	Calcium carbonate is thermodynamically stable at room temperature because for this reaction						
	⊠ A	the activation energy is high.					
	⊠ B	the enthalpy change, ΔH , is positive.					
	⋈ C	entropy change of the system (ΔS_{system}) is positive.					
	⊠ D	entropy change of the system (ΔS_{system}) is negative.					
		(Total for Question = 1 mark)					
6 2-methylpropane has a smaller standard molar entropy at 298 K than butane. explanation for this is that 2-methylpropane has							
	⊠ A	a lower boiling temperature.					
	⊠ B	a higher standard molar enthalpy change of formation.					
	⊠ C	fewer ways of distributing energy quanta.					
	⊠ D	more ways of distributing energy quanta.					
		(Total for Question = 1 mark)					
7	The equ	ation for the reaction of iron and nickel(II) ions in aqueous solution is					
		Fe(s) + Ni ²⁺ (aq) \rightarrow Fe ²⁺ (aq) + Ni(s)					
	Under standard conditions the value of the equilibrium constant, K_c , for this reaction is greater than 1. Hence, for this reaction,						
	A A	$\Delta S_{ ext{total}}^{\leftrightarrow}$ and $E_{ ext{reaction}}^{\leftrightarrow}$ are both positive.					
	B A	$\Delta S_{ ext{total}}^{\ominus}$ is positive and $E_{ ext{reaction}}^{\ominus}$ is negative.					
	⊠ C /	$\Delta S_{total}^{\scriptscriptstyle \ominus}$ is negative and $E_{reaction}^{\scriptscriptstyle \ominus}$ is positive.					
	■ D /	$\Delta S_{ ext{total}}^{\ominus}$ and $E_{ ext{reaction}}^{\ominus}$ are both negative.					
		(Total for Question = 1 mark)					

8 The reaction below is carried out at 25 °C. Use the equation and the data to answer the questions that follow.

$$SO_2(g) + 2H_2S(g) \rightarrow 3S(s) + 2H_2O(g)$$

$$\Delta H$$
 107.4 kJ mol⁻¹

Substance	Standard molar entropy, S^{\oplus} / J mol ⁻¹ K ⁻¹
$SO_2(g)$	248
$H_2S(g)$	206
$\mathrm{H_2O}(\mathrm{g})$	189
S(s)	32

(a) The standard entropy change of the system, in $J \text{ mol}^{-1} \text{ K}^{-1}$, is

(1)

- **△ A** 186
- **B** +186
- **C** 233
- **D** +233

(b) The standard entropy change of the surroundings, in J mol⁻¹ K⁻¹, is

(1)

- \triangle **A** 107.4 × 1000 / 25
- \blacksquare **B** 107.4 × 1000 / 25
- **□ C** 107.4 × 1000 / 298
- \square **D** 107.4 × 1000 / 298

(Total for Question 2 marks)

	$\boxtimes A$	water free	ezes.		
	× B	water boil	ls.		
	\boxtimes (water reac	ets with sodium.		
	× D	water reac	cts with ethanoyl chlorid	e.	
				(Total for Question	1 mark)
10	Whic	h of the follo	wing is true for the exotl	hermic reaction shown below?	
			$Mg(s) + 2HCl(aq) \rightarrow$	$MgCl_2(aq) + H_2(g)$	
	\boxtimes A	ΔH	positive		
	⊠ B	$\Delta S_{\text{surroundings}}$	positive		
	区 C	$\Delta S_{ m system}$	negative		
	\boxtimes D	$\Delta S_{ m total}$	negative		
				(Total for Question =	: 1 mark)
11		of these solid		have the greatest standard entropy?	Use of
	⊠ A	SnO			
	⊠ B	SnO_2			
	区	$SnBr_2$			
	\boxtimes D	SnBr ₄			
				(Total for Question	1 mark)

9 A decrease in the entropy of the system, $\Delta S_{\rm system}$, occurs when

12	Which reaction has the most positive entropy change for the system, ΔS_{system} ?					
	\square A NaOH(aq) + HCl(aq) \rightarrow NaCl(aq) + H ₂ O(l)					
	■ B	$AgNO_3(aq) + NaCl(aq) \rightarrow AgCl(s) + NaNO_3(aq)$				
	■ C	C_2H_2	$_{4}(g) + HCl(g) \rightarrow$	$C_2H_5Cl(1)$		
	\boxtimes D	C ₄ H	$C_2H_4(g)$	$+ C_2H_6(g)$		
					(Total for Question	1 mark)
13	l Rari	um ca	rhonate decomno	oses in an endoth	ermic reaction when heated to 150	n0 K
10	Dan	uiii Ca	-	$aCO_3(s) \rightarrow Ba0$		υK.
	XX/1 4	41.			.,	
	wnat	are th	ne signs of the en	tropy changes at	1500 K?	
			$\Delta S_{ m system}$	$\Delta S_{ m surroundings}$		
	×] A	+	+		
	×]]	+			
	×		C	+		
	×] I)			
			I		(Total for Question	1 mark)
					(2000) 201 Quo 0000	1
1	4 Wh	en am	monium nitrate o	crystals dissolve	in water, the entropy of the system	L
	X	A	remains the same	2.		
	×	В	falls, because the hydrated ions are more ordered than the solid.			
C rises, because the ions in the crystal become				tal become hydrated in the solution	1.	
	X	D	rises, because the	e ions are arrange	ed more randomly in the solution the	han in the

(Total for Question = 1 mark)

crystal.